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ABSTRACT
Peptide signal sequences attached to or embedded into a core protein sequence control its cellular localization and several post-translational

modifications. However, misleading or cumbersome results may be generated when expressing recombinant proteins with modified signal

peptides or single domains of larger proteins. J. Cell. Biochem. 114: 510–513, 2013. � 2012 Wiley Periodicals, Inc.
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P eptide signal sequences attached to or embedded into a core

protein sequence control its cellular localization and several

post-translational modifications. The identification of peptide

sequences conferring specific information has been exploited, for

instance, to direct the accumulation of recombinant constructs in

the non-physiological sub-cellular compartments or for the

engineering of in vivo leader peptide-directed biosynthetic systems

[Cardinale et al., 2004; Oman and van der Donk, 2010].

However, misleading or cumbersome results may be generated

when expressing recombinant proteins with modified signal

peptides. In Figure 1 we report an observation that we made

when trying to express the recombinant Myc protein for purification

purposes. It is well known that this is a nuclear protein and its

recovery from cells is not feasible using mild buffers compatible

with structure preservation. Although there are reports in which

nuclear proteins were secreted after being modified by fusing a

suitable signal peptide to the construct [Garnier et al., 1995], when

the Myc sequence was subcloned in frame with a secretion signal

peptide, the protein accumulated neither in the culture medium nor

in the nucleus, but in the cytoplasm. This result was unpredicted but

immediately identified as aberrant, since we knew where we would

logically expect to find Myc. However, it could potentially lead us to

completely wrong conclusions if we were testing the expression of

an uncharacterized protein. Furthermore, some questions remain to

be answered: Why secretion of nuclear proteins does work out for

some of them and not for others? How can we evaluate the absolute

and relative efficiency of signal peptides?

Indeed, the complexity of the in vivo equilibrium regulating, for

instance, shuttling proteins should urge the study of the hierarchy of

various signals present in any single sequence as to understand the

consequences of the co-existence of signals with conflicting roles.

Although we know that the de novo introduction of a new aberrant

signal peptide to the nucleophosmin modifies its cellular localiza-

tion and may lead to oncogenic transformation [Falini et al., 2006]

as well as that a mutation inside the signal sequence prevents the

secretion of preproparathyroid hormone in the endoplasmic

reticulum thus determining its toxic accumulation [Datta et al.,

2007], we do not have the understanding as to how exactly the

mutations involving the signal peptides quantitatively alter their

strength and consequently lead to a pathological condition. In other

words, there are several examples in which signal peptide variants

abrogating its functionality cause pathological sub-cellular locali-

zation [Szczesna-Skorupa et al., 1988; Kiraly et al., 2007], but it

remains almost unknown whether mutations can modify the

physiological state by simply tuning the strength of a signal

peptide [Ronald et al., 2008] and, in doing so, alter slightly the sub-

cellular equilibrium.

In practical terms, the missing knowledge may lead to

misinterpretation of subcellular localization data and this effect

may be amplified in the case of results obtained with ‘‘chopped

proteins.’’ It begs the question of whether researchers are careful

enough when using separate domains of proteins to infer from their

localization the localization of the complete protein that may host

signal peptides capable of modifying the subcellular deliver. For

instance, in a recent article [Park et al., 2012] the authors

demonstrated that the sub-cellular localization of the NANOG

transcription factor in COS-7 cells is regulated by two already

known NLSs as well as by a (initially undetected) NES that they were
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finally able to characterize. In how many cases undetected signal

sequence can determine the mislocalization of protein domains

expressed independently? Consequently, should control data

confirming the physiological significance of the localization

experiments be mandatory to avoid accumulation of erroneous

results in our archives?

Presently much is known about the consensus sequences that may

act as signal peptides, but the reports dealing with parameters

regulating their strength and activity modulation are very rare [Liu

and Ganz, 1995; O’Sullivan et al., 2003; Holden et al., 2005]. To this

end, a systematic investigation on the subject could reveal the

mechanisms by which the efficacy of signal peptides can be tuned.

In turn, this information would provide a rationale to predict how

the modification of signal peptides incorporated into mature

sequences in virtue of pathological or recombinant events might

change their activity and, by modulating the trafficking rate of that

protein between cell compartments, the cell metabolism.

Surprisingly, despite the effort devoted for identifying consensus

sequences and designing precise algorithms for predicting func-

tional classes of signal sequences relevant for protein trafficking,

only few reports [Cioffi et al., 1989; Nothwehr and Gordon, 1989;

Heger et al., 2001; Engelsma et al., 2004; Kutay and Güttinger, 2005;

Geisberger et al., 2009] deal with quantitative and structural

analyses aimed at evaluating how some residue modifications may

drastically change the strength of a sequence intended for a specific

job. Even more surprisingly, this research opportunity has been

neglected even though the availability of supraphysiological

nuclear export signals sufficient for tuning the protein shuttling

allowed to elucidate critical mechanisms of interaction between the

nuclear pore complex and CRM1 [Engelsma et al., 2004]. Since the

steady-state localization of proteins shuttling between nucleus and

cytoplasm depends on the rate of both fluxes, modifications of either

NES or NLS will lead to altered physiological conditions, as well as

chemical treatments may do so [Akaoumianaki et al., 2009].

The picture becomes even more complicated when proteins

possess multiple signal peptides, namely several sequences that can

be modified [Bolli et al., 2009; Rajamäki and Valkonen, 2009]. What

does it happen when a further synthetic signal sequence is added or a

domain of the protein is removed without considering the ‘‘sub-

cellular information’’ contained in this portion? Is it meaningful to

look for protein–protein interactions that occur in cell compart-

ments that are precluded to a particular protein in physiological

conditions without being aware of a potential artifact? Recently,

Choudhary et al. [2009] showed that the Flt3 mutant kinase

aberrantly phosphorylates inappropriate substrates because it is

targeted to ER instead of the membrane, but what conclusions would

have been inferred by less accurate researchers who would have

limited their work to phosphorylation profile comparisons without

analyzing the sub-cellular localization of wild type and mutant

enzyme?

Whether we still do not know exactly what determines the

strength of signal sequences, it has been demonstrated that some

structural modifications can change it, as for instance in the case of

net charge, hydrophobicity, phosphorylation, and disulfide bond

formation [Beals et al., 1997; Kaffman et al., 1998; Kuge et al., 2001;

Sorokin et al., 2007; Lee et al., 2011]. It is to be noted that these are

on-off switch mechanisms rather than tuning systems, and similarly

yes/no selection is also used for identifying canonical and

unconventional signal sequences the abrogation of which alters

the sub-cellular protein localization [Vissinga et al., 2009; Zaarour

et al., 2009; Evangelisti et al., 2010; Katayama et al., 2010;

Kovalenko et al., 2010]. Only few phosphorylation events have been

described as sufficient for tuning the signal sequence strength of

their transporter partners [Hübner et al., 1997; Briggs et al., 1998;

Komeili and O’Shea, 1999], but we would expect that mutations

resulting in a simple relative strength modification, namely altered

trafficking rate, also happen. Are they too difficult to spot? Are odd

data obtained with modified signal sequences missing because

considered inconsistent and, consequently, not reported? Further-

more, we should consider that sometimes the real distribution of a

specific protein in the different cell compartments is misunderstood

just because of the lack of suitable reagents [Gruszka et al., 2012].

Recombinant protein expression is difficult to regulate [Carter

and Reszka, 2002] and can perturb cell localization by means of

several mechanisms that can interact with those mediated by signal

peptides. Overexpression can saturate the physiological cell

compartment and consequently protein can leak or be transported

in other organelles [Arabi et al., 2003], misfolding can impair the

structural recognition of translocation motives [Knodler et al., 2011]

and crucial partners involved in trafficking can become limiting for

correct delivery [Sundvall et al., 2012]. Finally, Kuusisto et al. [2012]

have recently shown that SV40-induced cell transformation

significantly modifies the nuclear localization-dependent nuclear

Fig. 1. Recombinant expression of Myc protein in HeLa cells. Myc was

expressed either by using the pcDNA3 vector generating constructs without

appended signal peptides or by using the pSecTag2 vector that enables the

fusion of a secretion motive to the protein. HeLa cells were plated on slides pre-

treated with 0.1% gelatin. Cells were transfected with 1mg DNA/ml

(pcDNA3.1-Myc or pSecTag2-Myc) and fixed in the presence of 4% parafor-

maldehyde. Anti-Myc primary antibody (9E10) was added at a concentration

of 1mg/ml. CY3-goat anti-mouse antibody, diluted 1:400 in PBS, was used as a

secondary antibody. Slides were treated with DAPI (1:5,000 in PBS) for nuclear

detection and assembled by using moviol.

JOURNAL OF CELLULAR BIOCHEMISTRY MULTIPLE SIGNAL PEPTIDES WITH DIVERGING GOALS 511



transport and correctly asked whether this standard technique is

really reliable for producing model cell types since ‘‘transformed

cells will almost certainly have significantly enhanced nuclear

transport properties, which in turn may alter cell phenotype in

various, yet-to-be-identified ways’’ and their use ‘‘may well not

be suitable for many studies for which they are currently used as

accepted practice.’’

If we consider that the artifacts generated by inducingheterologous

protein expression and briefly listed in this comment can sum to those

produced in live-cell imaging [Schnell et al., 2012],we could conclude

that research should invest more resources in evaluating methodolo-

gies as well as in open-access repositories for collecting and

comparing experimental data obtained using detailed protocols and

minimal information guidelines [Nelson, 2009; Buckle et al., 2011].

Indeed, the results of two single methodological articles [Kuusisto

et al., 2012; Schnell et al., 2012] might questions the data published

in hundreds of other articles but this is the kind of contributions we

need for better distinguishing robust data from putative artifacts.

Specifically, we ask for more caution when dealing with protein

domains that can be delivered in non-physiological compartments

because of the addition of heterologous signal sequences or because

native localization signals have been, consciously or not, removed.
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